

Form Approved OMB No. 0704-0188

W

AD-A267 049

to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, glathering and tion of information. Send comments regarding this burden estimate or any other aspect of this collection of information encluding a Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, V/rk Reduction Project (0*704-0188), Washington, DC 20503

2. REPORT DATE

May 1993

3 REPORT TYPE AND DATES COVERED

Professional Paper

4. TITLE AND SUBTITLE

LOOKING AT FOKKER-PLANCK DYNAMICS WITH A NOISY INSTRUMENT

6. AUTHOR(S)

5. FUNDING NUMBERS

PR: MA19 PE: 0601153N WU: DN309049

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Command, Control and Ocean Surveillance Center (NCCOSC) RDT&E Division

San Diego, CA 92152-5001

8. PERFORMING ORGANIZATION REPORT NUMBER

REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research 800 North Quincy Street Arlington, VA 22217

PTI

10. SPONSORING/MONITORING AGENCY REPORT NUMBER

11 SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

We consider the class of experiments which can be characterized by a Fokker-Planck dynamics corresponding to the overdamped motion of a state point in a suitable stochastic potential. We assume that the general form of the potential is known (or can be guessed with reasonable accuracy) but that its parameters are to be determined experimentally by measurements made with a noisy instrument. This possible method for determining the potential parameters, which exploits the system's own internal stochastic motion in order to rapidly explore its available parameter space, is substantially more efficient than traditional methods involving time averages of single point measurements, and yet does not appear to have been previously considered. The method could be important, when, for example, the experiment must be completed in a limited time owing either to the expense of the experimental materials or to the temporary stationarity of the preparation, situations which are commonly encountered in experimental biochemistry and biology.

93

1

2

Published in Journal of Statistical Physics.

93-16722

14. SUBJECT TERMS	-		15 NUMBER OF PAGES
SQUID	noise		
CHAOS	stochastic resonance		16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20 LIMITATION OF ABSTRACT
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	SAME AS REPORT

NSN 7540-01-280-5500

UNCLASSIFIED

. .

21a. NAME OF RESPONSIBLE INDIVIDUAL	21b. TELEPHONE (include Area Code)	21c OFFICE SYMBOL
A. Bulsara	(619) 553 – 1595	Code 573

DTIC QUALITY EXCPECTED 1

Looking at Fokker-Planck Dynamics with a Noisy Instrument

Gabor Schmera and Adi Bulsara

NCCOSC-RDT&E Division, Materials Research Branch

San Diego, CA 92129

David Pierson and Frank Moss

Department of Physics

University of Missouri at St. Louis

St. Louis, MO 63121

Enrico Di Cera

Department of Biochemistry and Molecular Biophysics

Washington University School of Medicine, Box 8231

St. Louis, MO 63110

ABSTRACT

We consider the class of experiments which can be characterized by a Fokker-Planck dynamics corresponding to the overdamped motion of a state point in a suitable stochastic potential. We assume that the general form of the potential is known (or can be guessed with reasonable accuracy) but that its parameters are to be determined experimentally by measurements made with a noisy instrument. This possible method for determining the potential parameters, which exploits the system's own internal stochastic motion in order to rapidly explore its available parameter space, is substantially more efficient than traditional methods involving time averages of single point

measurements, and yet does not appear to have been previously considered. The method could be important when, for example, the experiment must be completed in a limited time owing either to the expense of the experimental materials or to the temporary stationarity of the preparation, situations which are commonly encountered in experimental biochemistry and biology.

PACS 06.50.-x 06.50.Mk